NEC brings together and integrates technology and expertise to create the ICT-enabled society of tomorrow. We collaborate closely with partners and customers around the world, orchestrating each project to ensure all its parts are fine-tuned to local needs. Every day, our innovative solutions for society contribute to greater safety, security, efficiency and equality, and enable people to live brighter lives.
<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Technology</th>
<th>CPU Frequency</th>
<th>CPU Performance</th>
<th>CPU Memory Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX-2</td>
<td>1983</td>
<td>Bipolar</td>
<td>165 MHz</td>
<td>1.3 GFlops</td>
<td>10.7 GB/sec</td>
</tr>
<tr>
<td>SX-3</td>
<td>1989</td>
<td>Bipolar</td>
<td>340 MHz</td>
<td>5.5 GFlops</td>
<td>12.8 GB/sec</td>
</tr>
<tr>
<td>SX-4</td>
<td>1994</td>
<td>350 nm</td>
<td>125 MHz</td>
<td>2.0 GFlops</td>
<td>16.0 GB/sec</td>
</tr>
<tr>
<td>SX-5</td>
<td>1998</td>
<td>250 nm</td>
<td>250 MHz</td>
<td>8.0 GFlops</td>
<td>64.0 GB/sec</td>
</tr>
<tr>
<td>SX-6</td>
<td>2001</td>
<td>150 nm</td>
<td>500 MHz</td>
<td>8.0 GFlops</td>
<td>32.0 GB/sec</td>
</tr>
<tr>
<td>SX-7</td>
<td>2002</td>
<td>150 nm</td>
<td>552 MHz</td>
<td>8.6 GFlops</td>
<td>35.3 GB/sec</td>
</tr>
<tr>
<td>SX-8</td>
<td>2004</td>
<td>90 nm</td>
<td>1.0 GHz</td>
<td>16.0 GFlops</td>
<td>64.0 GB/sec</td>
</tr>
<tr>
<td>SX-9</td>
<td>2007</td>
<td>65 nm</td>
<td>3.2 GHz</td>
<td>102.4 GFlops</td>
<td>256.0 GB/sec</td>
</tr>
<tr>
<td>SX-ACE®</td>
<td>2013</td>
<td>28 nm</td>
<td>1.0 GHz</td>
<td>256.0 GFlops</td>
<td>256.0 GB/sec</td>
</tr>
</tbody>
</table>

Over 30 years Experience For High Sustained Performance

History of SX Vector Supercomputer

Orchestrating a brighter world NEC
Market Trend

- Continuous increase in demand for computing power to advance science and social life
- Explosive increase in data volume / type
- Open environment by Linux

Computing Power Demand

Data Explosion

Open environment

High Accuracy Systematization

Simulation

Ex. High precision financial simulation
Ex. Aircraft whole simulation

Ex. Services according to individual preferences

AI/Machine Learning / BigData

Ex. Explosive increase of input data · output data
New Value

NEC’s Vector technology can invent new Social Values - as the key to accelerate HPC + AI/Big Data Analytics
Brand-new Vector Supercomputer

New powerful platform for development of science and technology - leads to accelerate HPC and Big-data analysis

SX-Aurora TSUBASA

TSUBASA: meaning “wing” in Japanese

POINT 1 Memory Bandwidth
1.2TB/s / processor, 150GB/s / core

POINT 2 Easy to Use
Fortran/C/C++ programing, OpenMP
Automatic vectorization/parallelization

POINT 3 x86/Linux
High sustained performance on x86/Linux environment
Point 1 : Memory Bandwidth
New Designed Vector Engine

Vector Processor on the Card

Vector Engine (VE)

- New Developed Vector Processor
- PCIe Card Form factor, but NOT an accelerator
- 8 cores / processor
- 2.45TF performance
- 1.2TB/s memory bandwidth
- Normal programing with Fortran/C/C++
Point 2 : Easy to Use
Point 3 : x86/Linux
NEC’s vector processor can execute more data at one time than other ones.

Ordinary processor
execute small size data at one time.

NEC’s vector processor
execute large size data at one time.
High Processing Speed with the Innovative System Architecture

- Accelerator Type: Frequent PCIe transmission
- SX-Aurora TSUBASA: Whole AP is executed on VE, hence the PCIe bottleneck on GPGPU will be reduced.

Accelerator Type

<table>
<thead>
<tr>
<th>Application</th>
<th>Transmission</th>
<th>Transmission</th>
<th>Transmission</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux OS</td>
<td>x86 Processor</td>
<td>Accelerator (GPGPU)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SX-Aurora TSUBASA

Whole AP is executed on VE

Application

<table>
<thead>
<tr>
<th>Linux OS</th>
<th>x86 Processor</th>
<th>Vector Engine</th>
</tr>
</thead>
</table>
Comparison between Aurora and GPGPU

GPGPU Architecture

- **OS**
- **AP** (CUDA)
- **Function**
- **x86**
- **PCIe**
- **GPGPU**
- **Memory**

Data Transmission: exec → Result Transmission → exit

Advantage
- Avoiding PCIe bottleneck
- Larger memory
- Standard language

Disadvantage
- PCIe bottleneck
- Small memory
- Programming difficulty

Aurora Architecture

- **OS**
- **AP**
- **VE**
- **x86**
- **PCIe**
- **Memory**

Start Processing: exec → **I/O, etc** → **End Processing**

Reduce bottlenecks on PCI BUS

Whole AP is executed on VE

Frequent PCIe transmission
Hybrid architecture combining Vector Processor with x86 Processor
1. SX-Aurora = x86 server + Vector Engine (VE)
2. VE capability is provided on x86/Linux environment
3. InfiniBand Interconnect support

SX-Aurora Architecture

Hardware
- x86 server + VE

Software Environment
- x86 / Linux OS
- Fortran/C/C++ standard programming
- Automatic vectorization by proven vector compiler

Interconnect
- InfiniBand for MPI
Features of the world’s fastest Vector Engine

Best Features

- **World’s fastest Core**
 - 307GFlops (DP)
 - 614GFlops (SP)

- **World’s best data access performance**
 - 1.22TB/s

- **Technology**
 - World’s first **HBM2** x6 installed

Developed with TSMC the world’s first CPU and six 3-dimensional stacked memory **HBM 2** Technology.
Usability x High Memory Bandwidth

NO special programming like CUDA is necessary!

Position

Performance

Memory bandwidth / processor

standard
special

required programming skills

GPGPU vs. VE

Vector Engine

GPGPU

Xeon®

Xeon®
GPGPU
Vector Engine
Usability

Programing Environment

Vector Cross Compiler
- automatic vectorization
- automatic parallelization

<table>
<thead>
<tr>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>F2003, F2008(partially)</td>
</tr>
<tr>
<td>C</td>
<td>C11</td>
</tr>
<tr>
<td>C++</td>
<td>C++14</td>
</tr>
<tr>
<td>OpenMP</td>
<td>OpenMP4.5</td>
</tr>
<tr>
<td>MPI</td>
<td>MPI3.1</td>
</tr>
</tbody>
</table>

Execution Environment

$ vi sample.c
$ ncc sample.c

$./a.out

x86

execution
VE(Vector Engine)
Vector Engine (VE) SKUs

3 VE SKUs, Type 10A/10B/10C
- Frequency: 1.6GHz or 1.4GHz
- Memory Bandwidth: 1.22TB/s or 0.75TB/s
- Memory Capacity: 48GB or 24GB

<table>
<thead>
<tr>
<th>VE Type</th>
<th>Freq. (GHz)</th>
<th>core</th>
<th>processor</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GF</td>
<td>cores</td>
<td>BF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DP TF</td>
</tr>
<tr>
<td>Type 10A</td>
<td>1.6</td>
<td>307.2</td>
<td></td>
<td>2.45</td>
</tr>
<tr>
<td>Type 10B</td>
<td>1.4</td>
<td>268.8</td>
<td>8</td>
<td>2.15</td>
</tr>
<tr>
<td>Type 10C</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Air Cooling

Air Cooled VE for Server/Tower
VE1.0 Type 10C (2.15TF, 0.75TB/s, 24GB): Active/Passive
VE1.0 Type 10B (2.15TF, 1.20TB/s, 48GB): Passive

Passive Cooling Type
VE1.0 Type 10B/10C
For Server

Active Cooling Type
VE1.0 Type 10C
For Tower/Workstation
Direct Liquid Cooling

Water Cooled VE for Supercomputer
VE1.0 Type 10A (2.45TF, 1.2TB/s, 48GB)
VE1.0 Type 10B (2.15TF, 1.2TB/s, 48GB)
Product Plan

VE 10A

VE 10B

VE 10C

A100-1
Tower

A300-2
2VE rackmount server

A300-4
4VE rackmount server

A300-8
8VE rackmount server

A500-64 Supercomputer

Air cooling

Water cooling door

Water (DLC) ~40°C

Subject to change without notice
SX-Aurora TSUBASA covers wide range of lineup from entry model to high-end supercomputer model

A500 series **Supercomputer Model**
- Large-scale simulation
- ~64VE/Rack

A300 series **Rackmount Model**
- General simulation
- AI・Big Data Analytic
- ~2VE, ~4VE, ~8VE

A100 series **Tower Model**
- Small & real-time simulation
- For program developers
- AI・Big Data Analytic
- 1VE

- Weather/Climate
- Research
- CAE Oil/Gas
- Manufacturing
- Financial
- Researcher
- Small, mid-size enterprise
A100 Series

A100-1
1VE Tower

Intel Xeon®
Gold 6100, Silver 4100

VE1.0
Type 10C
A300 Series

A300-2
2VE Server

A300-4
4VE Server

Intel Xeon®
Gold 6100, Silver 4100

VE1.0
Type 10B/10C

VE1.0
Type 10B/10C
A300 Series

A300-8
8VE Server

PCIe Gen.3 x16

PCIe Gen.3 x16

Intel Xeon®
Gold 6100, Silver 4100
A500 Series

A500-64 Supercomputer

<table>
<thead>
<tr>
<th>VE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance (SKU-A)</td>
<td>2.45TF</td>
</tr>
<tr>
<td>M Bandwidth</td>
<td>1.2TB/s</td>
</tr>
</tbody>
</table>

Rack

<table>
<thead>
<tr>
<th># of VEs</th>
<th>32/48/64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>157TF</td>
</tr>
<tr>
<td>M Bandwidth</td>
<td>76.8TB/s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>H:42U, W: 19in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Consumption</td>
<td>< 30KW</td>
</tr>
<tr>
<td>Cooling</td>
<td>Hot/Cold water</td>
</tr>
</tbody>
</table>

(subject to change)

42U 32U 10U

4U

x8 w/ DLC
Example:
Large scale system by using the 8VE server

MPI operations are directly executed between VEs without memory coping to x86 memory
Lineups and Schedule

Vector Engine (VE) SKUs

<table>
<thead>
<tr>
<th>SKU</th>
<th># of cores</th>
<th>Peak performance</th>
<th>Memory Band Width</th>
<th>Memory Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 10A</td>
<td>8 cores</td>
<td>2.45 TFLOPS</td>
<td>1.22 TB/s</td>
<td>48 GB</td>
</tr>
<tr>
<td>Type 10B</td>
<td></td>
<td>2.15 TFLOPS</td>
<td>0.75 TB/s</td>
<td></td>
</tr>
<tr>
<td>Type 10C</td>
<td></td>
<td></td>
<td></td>
<td>24 GB</td>
</tr>
</tbody>
</table>

Models and schedule

<table>
<thead>
<tr>
<th>Models</th>
<th>Tower model</th>
<th>Rack-mount model</th>
<th>Supercomputer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKU</td>
<td>A100-1</td>
<td>A300-2</td>
<td>A300-4</td>
</tr>
<tr>
<td>Supported VE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 10C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 10B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 10A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of VE</td>
<td>1</td>
<td>Up to 2</td>
<td>Up to 4</td>
</tr>
<tr>
<td>Form Factor</td>
<td>Tower</td>
<td>1U Rackmount</td>
<td>4U Rackmount</td>
</tr>
<tr>
<td>System cooling</td>
<td>Air cool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Production</td>
<td>February ‘18</td>
<td>Q1’18</td>
<td>Q2’18</td>
</tr>
</tbody>
</table>
Comparison / Bench Marking
Performance comparison

Provide high data access performance and computing performance in standard environment

STREAM / Node
Data access performance evaluation benchmark

LINPACK / Node
Computing performance evaluation benchmark
Performance/Price

High Price Competitiveness
- The highest STREAM sustained performance / price
- Competitive HPL sustained performance / price

- VE provides same range HPL sustained performance/price compared to Intel products
- VE provides the highest memory bandwidth/price
SX-Aurora TSUBASA system software

<table>
<thead>
<tr>
<th>Software</th>
<th>Content</th>
<th>Mandatory/Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>• RHEL 7.3 and later</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Basic software</td>
<td>• VEOS</td>
<td>Mandatory</td>
</tr>
<tr>
<td>(VH bundled)</td>
<td>• VE driver</td>
<td>Mandatory</td>
</tr>
<tr>
<td></td>
<td>• System maintenance tool</td>
<td></td>
</tr>
<tr>
<td>SDK</td>
<td>• Compiler</td>
<td>Mandatory</td>
</tr>
<tr>
<td></td>
<td>✓ Fortran compiler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✓ C/C++ compiler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Library</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✓ MPI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✓ libc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✓ Numerical library (BLAS, FFT, LAPACK, etc)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tool</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✓ gprof</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✓ gdb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✓ Eclipse PTP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✓ Ftrace Viewer / Proginf</td>
<td></td>
</tr>
<tr>
<td>OSS plugin</td>
<td>• Plugins (Zabbix, Ganglia, Nagios)</td>
<td>Option</td>
</tr>
</tbody>
</table>
Profiler tools: Ftrace

User can obtain performance information for each function as well as user specified regions with Ftrace.

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>EXCLUSIVE</th>
<th>AVER.TIME</th>
<th>MOPS</th>
<th>MFLOPS</th>
<th>V.OP</th>
<th>AVER. VECTOR</th>
<th>L1CACHE</th>
<th>CPU</th>
<th>PORT</th>
<th>VLD</th>
<th>LLC</th>
<th>PROC.NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TIME[sec]</td>
<td></td>
<td>[msec]</td>
<td>[%]</td>
<td></td>
<td>TIME</td>
<td>MISS</td>
<td>CONF</td>
<td>HIT</td>
<td>E. %</td>
<td></td>
</tr>
<tr>
<td>1012</td>
<td>49.093(24.0)</td>
<td>48.511</td>
<td>23317.2</td>
<td>14001.4</td>
<td>96.97</td>
<td>83.2</td>
<td>42.132</td>
<td>5.511</td>
<td>0.000</td>
<td>80.32</td>
<td>funcA</td>
<td></td>
</tr>
<tr>
<td>160640</td>
<td>37.475(18.3)</td>
<td>0.233</td>
<td>17874.6</td>
<td>9985.9</td>
<td>95.22</td>
<td>52.2</td>
<td>34.223</td>
<td>1.973</td>
<td>2.166</td>
<td>96.84</td>
<td>funcB</td>
<td></td>
</tr>
<tr>
<td>160640</td>
<td>30.515(14.9)</td>
<td>0.190</td>
<td>22141.8</td>
<td>12263.7</td>
<td>95.50</td>
<td>52.8</td>
<td>29.272</td>
<td>0.191</td>
<td>2.544</td>
<td>93.23</td>
<td>funcC</td>
<td></td>
</tr>
<tr>
<td>160640</td>
<td>23.434(11.5)</td>
<td>0.146</td>
<td>44919.9</td>
<td>22923.2</td>
<td>97.75</td>
<td>98.5</td>
<td>21.869</td>
<td>0.741</td>
<td>4.590</td>
<td>97.82</td>
<td>funcD</td>
<td></td>
</tr>
<tr>
<td>160640</td>
<td>22.462(11.0)</td>
<td>0.140</td>
<td>42924.5</td>
<td>21989.6</td>
<td>97.73</td>
<td>99.4</td>
<td>20.951</td>
<td>1.212</td>
<td>4.590</td>
<td>96.91</td>
<td>funcE</td>
<td></td>
</tr>
<tr>
<td>5356298</td>
<td>15.371(7.5)</td>
<td>0.000</td>
<td>1819.0</td>
<td>482.2</td>
<td>0.00</td>
<td>0.0</td>
<td>0.000</td>
<td>1.253</td>
<td>0.000</td>
<td>0.00</td>
<td>funcF</td>
<td></td>
</tr>
<tr>
<td>14.266(7.0)</td>
<td>1783.201</td>
<td>1077.3</td>
<td>55.7</td>
<td>0.00</td>
<td>0.0</td>
<td>0.000</td>
<td>4.480</td>
<td>0.000</td>
<td>0.00</td>
<td>funcG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>642560</td>
<td>5.641(2.8)</td>
<td>0.009</td>
<td>487.7</td>
<td>0.2</td>
<td>46.45</td>
<td>35.1</td>
<td>1.833</td>
<td>1.609</td>
<td>0.007</td>
<td>91.68</td>
<td>funcH</td>
<td></td>
</tr>
<tr>
<td>2032</td>
<td>2.477(1.2)</td>
<td>1.219</td>
<td>667.1</td>
<td>0.0</td>
<td>89.97</td>
<td>28.5</td>
<td>2.218</td>
<td>0.041</td>
<td>0.015</td>
<td>70.42</td>
<td>funcI</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.971(1.0)</td>
<td>246.398</td>
<td>21586.7</td>
<td>7823.4</td>
<td>96.21</td>
<td>79.6</td>
<td>1.650</td>
<td>0.271</td>
<td>0.000</td>
<td>2.58</td>
<td>funcJ</td>
<td></td>
</tr>
</tbody>
</table>

54851346 204.569(100.0) 0.004 22508.5 12210.7 95.64 76.5 154.524 17.740 13.916 90.29 total

54851346 204.569(100.0) 0.004 22508.5 12210.7 95.64 76.5 154.524 17.740 13.916 90.29 total

#include <ftrace.h>

(void) ftrace_region_begin("loop#1") // outside region begin
for (i = 0; i < n; i++) {
 ...
}

(void) ftrace_region_begin("loop#2") // inside region begin
for (j = 0; j < n; j++) {
 ...
}

(void) ftrace_region_end("loop#2") // inside region end
(void) ftrace_region_end("loop#1") // outside region end
Profiler tools: Ftrace Viewer

- Execution time of each function
- Variation in execution time of process (min, max, standard deviation)
- Variation time and vectorization ratio
- Execution time of all processes
- MPI information (communication time, waiting time, etc.)
More Information about SX-Aurora TSUBASA
Aurora Forum website

We are looking forward to seeing discussion about aurora among users and engineers. Let's enjoy the performance of SX-Aurora TSUBASA!

https://www.hpc.nec/
Free Trial Program (WING program)

Look at another brochure or contact to NEC-G staff!

WING Programme (1/2)

- Customers can try their own code or application on SX-Aurora TSUBASA by remotely accessing before purchasing.
- Trial program name: WING (Workspace Infrastructure by NEC Group)
- Terms:
 - Customer need to write and submit the application form.
 - One customer can use one time for TWO months.
 - Free for trial use.
 - Help desk service is open for WING users through WING Web site.
 - NEC will clear the machine and reinstall after trial period finish.
 - NEC would appreciate that customer give us feedback.

WING Programme (2/2)

- Contact
 - If you are interested in or want to use WING program, please feel free to contact the following NEC group staff.

Machine spec
SX-Aurora TSUBASA A300-2

- CPU: Xeon Gold 6126 (12core, 2.6GHz) x1
- MEM: 96GB
- Disk: 1TB HDD
- VE: TypeB (8core, 1.4GHz, 48GB MEM) x 2 or TypeC (8core, 1.4GHz, 24GB MEM) x 2
Contact

If you are interested in or want to use WING program, please feel free to contact the following NEC group staff.

Machine spec
SX-Aurora TSUBASA A300-2

- **CPU**: Xeon Gold 6126 (12core, 2.6GHz) x1
- **MEM**: 96GB
- **Disk**: 1TB HDD
- **VE**: TypeB (8core, 1.4GHz, 48GB MEM) x 2 or TypeC (8core, 1.4GHz, 24GB MEM) x 2